Uses the parameters calculated by BC_param to model a DGB distribution (Mansilla et al. (2007) doi:10.1016/j.joi.2007.01.001
) from the rank information in the data frame.
Value
A list with the following elements: The input data frame with added processed ranking data, model data and confidence interval data, the adjusted parameters, the confidence interval of the parameters, the linear model, a summary of the model and a generated function for use with raw numeric data.
Examples
modelISISCatalogued <- BC_model(Citation_ISICatalogued, column = 2, show_stats = F,rank_threshold=1)
head(modelISISCatalogued[[1]])
#> pre_numerator pre_denominator lwr predicted_values upr BC_rank
#> 1 486 1 2797814.44 3399435.46 4130424.55 1
#> 2 485 2 617787.55 729817.29 862162.55 2
#> 3 484 3 255231.03 296644.61 344777.93 3
#> 4 483 4 136277.94 156587.12 179922.93 4
#> 5 482 5 83745.06 95381.80 108635.52 5
#> 6 481 6 56247.55 63607.92 71931.45 6
#> N abundance
#> 1 0 368110
#> 2 1 70836
#> 3 2 44127
#> 4 3 32625
#> 5 4 25910
#> 6 5 21627
modelISISCatalogued[[6]](45)
#> A
#> 709.7155
modelISISCatalogued[2:6]
#> [[1]]
#> A a b
#> 5.482970e+05 2.218812e+00 2.949379e-01
#>
#> [[2]]
#> 2.5 % 97.5 %
#> (Intercept) 3.682324e+05 8.164128e+05
#> log_den 2.260682e+00 2.176941e+00
#> log_num 2.530679e-01 3.368079e-01
#>
#> [[3]]
#>
#> Call:
#> stats::lm(formula = log_abundance ~ log_den + log_num)
#>
#> Coefficients:
#> (Intercept) log_den log_num
#> 13.2146 -2.2188 0.2949
#>
#>
#> [[4]]
#>
#> Call:
#> stats::lm(formula = log_abundance ~ log_den + log_num)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.33243 -0.18667 -0.06665 0.27185 1.20461
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 13.21457 0.20261 65.22 <2e-16 ***
#> log_den -2.21881 0.02131 -104.12 <2e-16 ***
#> log_num 0.29494 0.02131 13.84 <2e-16 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.3417 on 483 degrees of freedom
#> Multiple R-squared: 0.9796, Adjusted R-squared: 0.9796
#> F-statistic: 1.162e+04 on 2 and 483 DF, p-value: < 2.2e-16
#>
#>
#> [[5]]
#> function (rank)
#> {
#> params["A"] * (max(t_frame[, "BC_rank"]) + 1 - rank)^params["b"]/(rank^params["a"])
#> }
#> <bytecode: 0x55894afcfc20>
#> <environment: 0x558950fde2a0>
#>